Research on Real-time Simulation and Control of Linear 1-stage Inverted Pendulum
نویسندگان
چکیده
Inverted pendulum system is a complex, unstable and nonlinear system. In order to make it become an adaptive and robust stable system in control strategy, the mathematical model of linear l-stage inverted pendulum has been established by means of Newton mechanics. The control strategies including classic control methods and modern control methods, such as the PID control algorithm, the pole assignment algorithm and the T-S fuzzy control algorithm.The real-time control results show that the PID control algorithm and the pole assignment algorithm based on the dynamic model have different qualities and characteristic. The structure of PID control is smiple, but the PID controller parameters is more difficult to select, and the overshoot of the system is easy to be increase because of the system strong instability. In addition, the traditional PID control algorithm can only control the pendulum’s angle, and can’t control displacement. Pole placement method has the better robustness and transient characteristics, but it mainly relies on the experience of engineers to select the desired pole, so it does not have the convenience and simplicity of the PID. The T-S fuzzy controller doesn’t need to build an accurate mathematical model of the object, the nonlinear system can be fuzzified into local linera model based on the empirical knowledge. The T-S fuzzy controller reduce the dimension of fuzzy controller and simplify the rules. The real-time control results analysis shows the pendulum and cart position can quickly be stabilized with strong robustness. In real-time control of the inverted pendulum system, car position, car speed and the pendulum angle and angular velocity, etc not only to be considered, but also the state variables, measurement accuracy and sensitivity of the sensor have to consider. So there are a lot of work to do in the real-time control of inverted pendulum system.
منابع مشابه
MINIMUM TIME SWING UP AND STABILIZATION OF ROTARY INVERTED PENDULUM USING PULSE STEP CONTROL
This paper proposes an approach for the minimum time swing upof a rotary inverted pendulum. Our rotary inverted pendulum is supported bya pivot arm. The pivot arm rotates in a horizontal plane by means of a servomotor. The opposite end of the arm is instrumented with a joint whose axisis along the radial direction of the motor. A pendulum is suspended at thejoint. The task is to design a contro...
متن کاملFriction Compensation for Dynamic and Static Models Using Nonlinear Adaptive Optimal Technique
Friction is a nonlinear phenomenon which has destructive effects on performance of control systems. To obviate these effects, friction compensation is an effectual solution. In this paper, an adaptive technique is proposed in order to eliminate limit cycles as one of the undesired behaviors due to presence of friction in control systems which happen frequently. The proposed approach works for n...
متن کاملReal-Time Optimal Control for Rotary Inverted Pendulum
Problem statement: The rotary inverted pendulum system was a highly nonlinear model, multivariable and absolutely unstable dynamic system. It was used for testing various design control techniques and in teaching modern control. The objectives of this study were to: (i) Develop a real rotary inverted pendulum which derived the mechanical model by using Euler-Lagrange and (ii) Design controller ...
متن کاملCapturability-based Analysis, Optimization and Control of 3D Bipedal Walking
Capturability analysis of the linear inverted pendulum model (LIPM) enabled walking over even terrains based on the capture point. We generalize this analysis to the inverted pendulum model (IPM) and show how it enables 3D walking over uneven terrains based on capture inputs. Thanks to a tailored optimization scheme, we can compute these inputs fast enough for a real-time control loop. We imple...
متن کاملReal-Time Physics Simulation Packages: An Evaluation Study
This paper includes a review of three physics simulation packages that can be used to provide researchers with a virtual ground for modeling, implementing and simulating complex models, as well as testing their control methods with less cost and time of development. The inverted pendulum model was used as a test bed for comparing ODE, DANCE and Webots, while Linear State Feedback was used to co...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCP
دوره 8 شماره
صفحات -
تاریخ انتشار 2013